Application Testing of Novel Neural Network Structures Leon
نویسنده
چکیده
The paper describes applications of a modified time-based multilayer perceptron (MTBMLP), which is a complex structure composed from a few time-based multilayer perceptrons with a reduced connectivity. The modification reduces connections, isolates information for each function and produces knowledge about the system of functions as a whole. This neural network is applied for change detection in signals delivered by sensor networks and for edge detection in image processing. In both applications a MTBMLP is utilized for function predictions and, after a further structure development is implemented, for an error prediction also. In sensor network applications, a number of experiments with Crossbow sensor kits and the MTBMLP acting as a function predictor have been conducted and analyzed for detecting a significant change in signals of various shapes and nature. A series of experiments with Lena image have been conducted for edge detection applications. The results demonstrate that MTBMLP is more efficient and reliable than other methodologies in sensor network change detection and that its application in in edge detection is also feasible.
منابع مشابه
Application of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine
In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...
متن کاملApplication of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error
Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...
متن کاملAPPLICATION OF NEURAL NETWORK IN EVALUATION OF SEISMIC CAPACITY FOR STEEL STRUCTURES UNDER CRITICAL SUCCESSIVE EARTHQUAKES
Depending on the tectonic activities, most buildings subject to multiple earthquakes, while a single design earthquake is suggested in most seismic design codes. Perhaps, the lack of easy assessment to second shock information and sometimes use of inappropriate methods in estimating these features cause successive earthquakes mainly were ignored in the analysis procedure. In order to overcome t...
متن کاملAppraisal of the evolutionary-based methodologies in generation of artificial earthquake time histories
Through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. Selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (AEAs) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کامل